Calculating the hyper–Wiener index of benzenoid hydrocarbons

نویسندگان

  • Petra Žigert
  • Ivan Gutman
چکیده

A method for the calculation of the hyper–Wiener index (WW ) of a benzenoid system B is described, based on its elementary cuts. A pair of elementary cuts partitions the vertices of B into four fragments, possessing nrs , r, s = 1, 2 vertices. WW is equal to the sum of terms of the form n11 n22 + n12 n21 . The applicability of the method is illustrated by deducing a general expression for WW of the coronene/circumcoronene series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for the Calculation of the Hyper-Wiener Index of Benzenoid Hydrocarbons

An algorithm for the calculation of the hyper-Wiener index (WW) of benzenoid hydrocarbons (both cata- and pericondensed) is described, based on the consideration of pairs of elementary cuts of the corresponding benzenoid graph B. A pair of elementary cuts partitions the vertices of B into four classes. WW is expressed as a sum of terms of the form n11n22 + n12n21, each associated with a pair of...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

Wiener Index of Hexagonal Systems

The Wiener index W is the sum of distances between all pairs of vertices of a (connected) graph. Hexagonal systems (HS’s) are a special type of plane graphs in which all faces are bounded by hexagons. These provide a graph representation of benzenoid hydrocarbons and thus find applications in chemistry. The paper outlines the results known for W of the HS: method for computation of W , expressi...

متن کامل

Generalized Wiener Indices in Hexagonal Chains

The Wiener Index, or the Wiener Number, also known as the “sum of distances” of a connected graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and chemical properties, and has been studied in depth. An index proposed by Schultz is shown to be related to the Wiener Index for trees, and Ivan Gutman proposed a modification of the Schultz index with...

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010